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Coupled-Mode Formulation of Multilayered
and Multiconductor Transmission Lines

Kiyotoshi Yasumoto, Senior Member, IEEE

Abstract— A novel coupled-mode formulation for multilay-
ered and multiconductor transmission lines is developed. In
this formulation, the solutions to the original multiconductor
system are approximated by a linear combination of eigen-
mode solutions associated with the isolated single conductor
line located in an appropriate reference dielectric medium, and
the reciprocity theorem is used to derive the coupled-mode
equations. The coupling coefficients are expressed in terms of
the simple overlap integrals between the eigenmode fields and
currents of the individual conductor lines. As a basic application,
the dispersion characteristics of two identical coupled-microstrip
lines are analyzed using the proposed coupled-mode theory. It
is shown that the results are in very close agreement with those
obtained by the direct Galerkin’s moment method over a broad
range of weak to strong coupling.

1. INTRODUCTION

ULTICONDUCTOR transmission lines arranged in a
multilayered dielectric medium are widely used in the
design of microwave and millimeter-wave integrated circuits.
One of the most important subjects on such transmission
systems is to evaluate efficiently as well as accurately the high-
frequency electromagnetic coupling between nearby conductor
lines. The coupling causes a crosstalk that seriously affects the
circuit performance in high-speed operation. The transmission
characteristics of coupled conductor lines can be rigorously
analyzed using various numerical methods [1]. However, those
direct solution methods become much more involved both an-
alytically and numerically when the number of conductor lines
increases and the conductors are situated in different layers of
the multilayered dielectric medium. Therefore, there has been
a strong need to implement approximate solution methods [2],
[3] for multilayered and multiconductor transmission lines.
In this paper, we present a coupled-mode formulation for
multilayered and multiconductor transmission lines based on
the full-wave analysis. The formulation is an extension of
the corresponding coupled-mode approach [4] for optical
waveguides. The total fields supported by multiconductor
lines are approximated by a linear combination of the modal
fields associated with the isolated single conductor lines, and
the coupled-differential equations governing the evolution of
modal amplitudes in each line are derived by making use of
the reciprocity relation. The coupling coefficients are given by
the simple overlap integrals between the eigenmode fields and
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currents of individual conductor lines in isolation. The new
formulation is applied to the analysis of two identical coupled
microstrip lines. It is shown that the dispersion characteristics
calculated by the present coupled-mode theory are in very
close agreement with those obtained from the direct Galerkin’s
moment method in the spectral domain over a broad range of
the separation distance between the two microstrips.

II. FORMULATION

Let E/y and H; be the electric and magnetic fields produced
by a current source J; located in one dielectric medium with
permittivity e1(y) and permeability po, and Ez and Hy be
the electric and magnetic fields produced by a current source
J2 located in another dielectric medium with permittivity
e2(y) and permeability pg. These electromagnetic fields satisfy
Maxwell’s equations

V x By = —jwugH, M
V x Hy = jwei(y)E1 + J1 2
V x By = —jwugHo (3
V x Hy = jwes(y)Ee + Jo )

and boundary conditions in the respective configurations.
Using a similar procedure for the Lorentz reciprocity theorem
in (1)-(4), the following equation is derived

V(El XHQ——Ez X.Hl)
= jwAe(y)E1 - Ey+ Ey - J1 — E1 - Js 5

where Az(y) = e1(y) — 2(y). When (5) is applied to a
cylindrical geometry which is translationally invariant in the
z direction, we obtain

0

-— (El XHQ—IEQXHl)'édZL'dy
0z K

:jw/ Ae(y)Eq - Esdxdy
S
+ / Fy - Jidxdy — / E, - Jodzdy (6)
S S

where 2 is the unit vector in the z direction and S denotes
the cross-section area in the transverse « — y plane. Equation
(6) constitutes the basis of the coupled-mode formulation
presented here.

To illustrate the formulation process, we consider two
coupled conductor transmission lines ¢ and b embedded in
a trilayered dielectric medium over a perfectly conducting
ground plane as shown in Fig. 1. C, and C}, represent the
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cross-sectional contours of perfect conductors ¢ and b in the
transverse plane. The geometry is uniform in the wave-guiding
z direction and the permittivity distribution of the dielectric
layer is denoted by e(y). We define two sets of solutions of
Maxwell’s equations to which the reciprocity relation (6) is
applied. For the first set of solutions (&, H,J;), we adopt
the eigenmode fields and currents (¥, H,.J) for the original
coupled structure as shown in Fig. 1 with £1(y) = &(y).
As the second set of solutions (Fy, Ha, J2), we employ the
eigenmode fields and currents associated with the isolated
single conductor lines ¢ and b located in the dielectric media
with g9(y) = e,(y) and e2(y) = ep(y), respectively. In this
case, two different models of the isolated conductor lines are
possible as the basis of the original coupled structure. Fig.
2(a) and (b) show the isolated conductor lines located in the
same trilayered dielectric medium as in the original structure,
for which ¢,(y) = es(y) = e(y). Fig. 3(a) and (b) show the
isolated conductor lines located in the two-layered dielectric
media with £,(y) and ¢,(y), respectively, that are different
from the original one with ¢(y). The eigenmode solutions for
the fundamental modes in those isolated configurations (a) and
(b) are denoted as follows:

EXE) = ef*) (x,y) exp(FB.2)

= [, +(,y) £ e, . (7,y)] exp(F5 By 2) @)
H'®) = () (z,y) exp(FjB2)
= [ih’V,t(mv y) + ‘%h’l',z (xa y)] eXp(:Fjﬂl,Z) (8)
= j55(z,y) exp(F5 By 2)
= [, (x,y) £ 2 - (2, y)] exp(Fj 6 2) 9

J®

where v = a,b, the superscripts (+) and (—) indicate the
modes propagating in the +z and —z directions, respectively,
and 3, is the propagation constant of the isolated conductor
line v. Applying the reciprocity relation (6) to the two sets of
solutions (E, H ,J) and (B, H() J() ), we obtain

0

— / (Ex H) - EC) x H) - 2dady
82 S

E() . Jdzdy (10)

= jw/ Aco(p)E - B dudy +
S Ch

where Az, (y) = e(y) —e,(y), and we have used the boundary
conditions that E - J 5;> = 0 on C, and Cj, and Efl_) .
J = 0 on C,. Similarly two sets of solutions (¥, H,J) and
(Eg‘),Hg_),Jg—) ) lead to

9 / (Ex H, ) — E{” x H) - 2dzdy
aZ S
:jw/ Aab(y)E-Eg‘)dxdy+/ E7) - Jdady (11)
S C,

where Aey(y) = e(y) —es(y), and we have used the boundary
conditions that E-J ,()_> =0onC, and Cy, and Eg_) -J=0o0n
C. Although (10) and (11) give the exact relations, (. H, J)
are the unknown eigenmode fields and current for the coupled
system. Then we express those fields and current distribution
as follows:

E = a(2)elP (z,y) + b(z)e (2. ) (12)
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Fig. 1. General configuration of coupled two-conductor lines located in a
trilayered delectric medium with e(y).

hy

H = a(z)hg“L)(m, y) + b(z)hl(,Jr)(a:, ) (13)
J = a(z)i{ (x,y) + b(2)iy(w,y) (14)

where a(z) and b(z) are unknown amplitude functions. The
above expressions are just the modal expansions in terms of
the two fundamental modes in isolated single conductor lines
a and b. It is also noted that the above expansion is only
an approximate set of solutions to the eigenmode fields and
current of the coupled system and the electric field defined by
(12) satisfies, only approximately, the boundary conditions on
the coupled conductor surfaces.

Substituting (7)—(9) and (12)-(14) into (10) and (11) and
taking into account that &) = 0 on Cp and j£+) =0 on
C,, the coupled-mode equations governing the evolution of
the amplitude functions a(z) and b(z) are derived. For the
first choice of the isolated conductor lines with Ae,(y) =
Aep(y) = 0 as shown in Fig. 2, we obtain

d Nab+Nba d

R a(z) + 5 Eb(z)

. . Na +Na, -
= —iBaa(2) = JlBa—"5—" + Kulb(z)  (15)
d Nap + Nyo d
a—z‘b(z) + — 5 E;a(z)

, 0 Nap + Nig
= —ifb(z) = (B —"5—" + Kiala(2)  (16)

with
1
N, = §/[e,,(x,y) X hy(x,y)] - 2dxdy (17)
s
J [ .

KV}J, = —z /Cu [eu,t(gf.ay) ']u,t(xa y)

- eu,z(xay)j,u,z(xay)]dwdy (18)

where v, i = a,b, and we have assumed that the eigenmode
fields are normalized so that N,, = Ny, = 1. For the second
choice of the isolated conductor lines as shown in Fig. 3, we
have

d Nab+Nbad
L MG

= —7[Ba + Laa]a(z)

oo Nap 4+ Npg
— j[Be b Ly + Ko lb(2)

5 (19)
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Fig. 2. (a) Isolated conductor line “a” and (b) isolated conductor line “b”
located in the same dielectric medium with (y) as the original structure in
Fig. 1.

hy

d , Nab + Nba d
Zb(z) + ~2 T2 2 z)

= —j[B + Lus]b(2)

il et et Kida() @)
with
Lo =5 [ Aes@levs(e,9) - enslarn)
— ez, y)epn, - (2, y)|dedy 2D

where v, 4 = a, b, Thus, the problem of two coupled conductor
lines is reduced to that of two isolated conductor lines. When
the eigenmode fields and currents for the isolated conductor
lines a and b are specified analytically or numerically for
the respective propagation models, the coupling coefficients
Nops Kyy, and Ly, (v, = a,b) governing the interaction
between the two conductor lines are easily calculated by the
overlap integrals given by (17), (18), and (21). The solutions
to the coupled-mode equations (15) and (16) or (19) and (20)
give the propagation constants of two fundamental modes in
the coupled conductor lines. Comparing the coupled-mode
formulation based on the two different propagation models, we
note that the calculation of eigenmodes of isolated conductor
lines as the basis, is simpler in the second propagation model,
whereas the resulting coupled-mode equations are more com-
plicated than those obtained by the first propagation model.

b,
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Fig. 3. (a) Isolated conductor line “a” located in a two-layered dielectric
medium with eq(y) and (b) isolated conductor line “b” located in another
two-layered dielectric medium with €, (y).

The procedure of coupled-mode formulation presented here
is general. For a system of multilayered N coupled-conductor
transmission lines, we may introduce N configurations of iso-
lated single conductor line placed in an appropriate dielectric
medium as the basis of propagation model. The eigenmode
fields and current of the coupled system are approximated
by a linear combination of those of isolated N systems.
The interaction between the vth and pth conductor lines are
described by the coupling coefficients N,,, K,,, and L,,
defined by (17), (18), and (21). Then the problem of the
N coupled-conductor lines is reduced to the analysis of the
N isolated single conductor lines and the simple numerical
integrations for calculating the coupling coefficients. This
analytical and numerical procedure is much simpler than the
direct numerical solution methods. It is noted that although
various numerical techniques have been developed [1] for the
analysis of coupled-conductor lines, the application of those
methods to the configurations of multiple nonidentical coupled
lines are very complicated and rather difficult.

III. NUMERICAL EXAMPLES

As a basic example, the proposed coupled-mode theory was
used to analyze coupled-microstrip lines as shown in Fig. 4.
Two identical microstrips a and b of width 2w and zero
thickness are situated with spacing 2d on the substrate-cover
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TABLE 1
NORMALIZED PROPAGATION CONSTANTS /3/ko OF THE SYMMETRIC AND ASYMMETRIC EHy MoDES oF Two COUPLED MICROSTRIP
LINES WITH w = 1.5 mm, » = 0.635 mm, & = 9.8, f = 5 ~ 20 GHz, AND VARIOUS SEPARATION DISTANCES d/w. Go Is
THE PROPAGATION CONSTANT OF THE EHy MODE OF ISOLATED SINGLE MICROSTRIP AND kg Is THE WAVENUMBER IN FREE
SPACE. CMT AND MOM REFER TO THE PRESENT COUPLED-MODE THEORY AND THE DIRECT GALERKIN'S MOMENT METHOD

(2) f=5GHz (fo/ko = 2.83466)
Symmetric mode Asymmetric mode
d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 2.96462 2.93887 2.91099 2.87032 | 2.68284 2.72413 2.75571 2.79826
MOM | 2.95881 2.93332 2,90836 2.86994 | 2.68033 2.72062 2.75351 2.79775
(b) f =10GHz (Bo/ko = 2.89439)
Symmetric mode Asymmetric mode
d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 3.01131 2.98093 2.95173 2.91388 | 2.75360 2.79981 2.83363 2.87432
MOM | 3.00504 2.97713 2.95055 2.91397 | 2.75194 2.79690 2.83183 2.87393
Symmetric mode Asymmetric mode
d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 3.03885 3.00733 2.98062 2.95115 | 2.82315 2.86947 2.90071 2.93247
MOM } 3.03443 3.00622 2.98092 2.95147 | 2.82488 2.86838 2.89971 2.93225
(d) f =20GHz (Bo/ko = 2.97776)
Symmetric mode Asymmetric mode
d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00
CMT | 3.05624 3.02606 3.00332 2.98207 | 2.88120 2.92425 2.95070 2.97340
MOM | 3.05437 3.02685 3.00422 2.98227 | 2.88632 2.92450 2.95011 2.97320
yu y[
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Fig. 4. Configuration of two 1dentical coupled mrcrostrip lines.

Fig. 5.

Az

Conventional single microstrip line introduced as the basis of coupled

interface in a trilayered structure, which consists of a ground
plane of perfect conductor, a dielectric substrate of thickness
h and relative permittivity €., and a cover layer of free space.
For this trilayered structure, two configurations for the isolated
conductor line model shown in Figs. 2 and 3 coincide with
each other, and the coupled-mode equations (19) and (20) are
reduced to (15) and (16) with Ae,(y) = Aey(y) = 0.

The eigenmode fields and currents of the isolated single
microstrips a and b, which are used to evaluate the coupling
coefficients K, and N, (v, = a,b), can be easily cal-
culated with Galerkin’s moment method solutions [3] in the
spectral domain for a conventional single microstrip as shown
in Fig. 5. Let By, éo(¢,y) and ho(¢,y), and jo(C) be the
propagation constant, the eigenmode fields, and the eigenmode

microstrip lines shown in Fig. 4.

current in the Fourier transformed domain for the fundamental
EHy mode of the conventional single microstrip line. Then we
have the following relations

Ba = By = Bo (22)
[€a(C ) ha (€, 9). 5a(C))]
= [80(¢, 1), Bo (¢, 1): 3o (O)] exp(j¢d) (23)
[€6(C, ), R (¢ 9). 35(C)]
= [€0(¢, 1), ho(¢. ), Go(Q)] exp(—j¢d). (24)

These solutions are substituted into (17) and (18). Omitting
the mathematical details, the coupling coefficients are given
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Fig. 6. Dispersion characteristics of the symmetric and asymmetric EHo modes of two coupled microstrip lines for four different separations. The values
of parameters are the same as those given in Table L (a) d/w = 1.1. (b) d/w = 1.5. (¢) d/w = 2.0. (d) d/w = 2.5.

as follows:

Nz Nt Noa / ~ I(¢) cos(2¢d)d¢ (25)

2 0
K =Ku = Kia
= L [ 0 Bi0a(O) + 2026, o (O)
T Jo

x cos(2¢d)d¢ (26)

with
2 [ . "
1O= [ ena(€. )0 (€. 1) 0 (¢, 0o C, )l
(27)

where we have used the symmetric properties of éo((,y),
ho(C,y), and 34(¢) as the functions of ¢. The integral in (27)
can be evaluated in closed form using the dyadic Green’s
function [5] in the spectral domain. The integrals in (23)
and (26) are efficiently calculated using the spectral data
which were obtained in Galerkin’s moment method analysis
of the conventional single microstrip line as shown in Fig. 5.
Note that the coupling effect between two microstrip lines
is described by the integrand factor cos(2{d) in (25) and

(26). The coupled-mode equations (15) and (16) with the
substitution of (22), (25), and (26) give two solutions. One
is the symmetric EHy mode with the propagation constant

K
P=htisw
which yields a(z) = b(z), and the other is the asymmetric
EHy mode with the propagation constant

K
P=bo-1_w

(28)

(29)

which yields a(z) = —b(z).

The method described above was implemented to calculate
the propagation constants of two identical coupled microstrip
lines. For comparison, the same coupled problem was also
rigorously solved by using directly Galerkin’s moment method
[3] with Chebyshev polynomial basis functions weighted by
appropriate edge factors. The normalized propagation con-
stants 3/ko of the symmetric and asymmetric EHy modes
calculated by (28) and (29) are given in Table I for w =
1.5 mm,h = 0.635 mm,e, = 9.8,f = 5 ~ 20 GHz, and
various separations d/w, and compared with those of the
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direct Galerkin’s moment method solutions, where &y is the
wavenumber in free space. Fig. 6(2)~(d) shows the dispersion
curves of the symmetric and asymmetric EHy modes of
coupled microstrips with four different separations. The -solid
lines are the results. of the present coupled-mode theory and
the dashed lines are those of the direct Galerkin’s moment
method. The values of parameters are the same as those
given in Table I. Comparing the results in Table I and Fig. 6
obtained by the two different approaches, we can see that
the coupled-mode approximations are in very close agreement
with the rigorous Galerkin’s moment method solutions over a
broad range of weak to strong coupling. Due to the simpler
matrix equation involved, the numerical procedure of the
coupled-mode analysis is much more efficient than that of the
direct Galerkin’s moment method. For the same computation
of propagation constants, the coupled-mode analysis requires

only about 8% of the computer time needed by the direct

moment method.

The rigorous Galerkin’s moment method solutions show
that when the two microstrips are widely separated, the prop-
agation constants of the coupled system converge to that
of the corresponding isolated single microstrip. As the two
microstrips become closer, the coupled system modes, sym-
meiric and asymmetric modes, emerge and their propagation
constants shift nearly symmetrically from the isolated one.
When the microstrip separation is further decreased, the shifts
become asymmetrical. The coupled-mode solutions (28) and
(29) clearly describe this situation. The coupling coefficient
N explains such an asymmetric behavior of the propagation
constants of the coupled modes in a strongly coupled case. In

this respect, the present coupled-mode theory is different from

the full-wave perturbation theory[3]. Although the perturbation
theory is another efficient approximate technique, it predicts
the coupled system modes shifted symmetrically from the
isolated one over the entire separation distance and loses the
validity in the strongly coupling regime. ' '

Before concluding, it is worth mentioning why the present
coupled-mode formulation yields a very good approximation
for the propagation constants of coupled microstrip lines. As
stated in Section II, the assumed expansions of the eigen-
mode fields and current (12) to (14) do not satisfy fully
Maxwell’s equations and the boundary conditions for the
coupled-conductor lines. However, the propagation constants
has a stationary nature with respect to a small variation in the
associated field distributions. Following the same procedure
as in the coupled optical waveguides [4], we can derive the
variational expression for the propagation constants which
leads to the identical coupled-mode equations as (15) and (16)
or (19) and (20). This fact indicates that any deviations of first
order in the assumed eigenmode field distributions only result
in errors of second order in the propagation constants.

IV. CoNcLusION

A novel coupled-mode theory for multilayered and multi-
conductor transmission lines has been developed based on the

generalized reciprocity relation. This coupled-mode theory is a
powerful analytical and numerical technique for approximating
the coupling between adjacent conductor lines with a good
physical justification. The coupling coefficients are given by
the simple overlap integrals between the eigenmode fields and
currents associated with individual isolated single lines. This
greatly simplifies the computational procedure and therefore
remarkably reduces computation time. The proposed coupled-
mode theory was applied to the analysis of two identical
coupled-microstrip lines. The numerical results of the prop-
agation constants are in very close agreement with those
of the rigorous. Galerkin’s moment method solutions over
a broad range of weak to strong coupling, indicating that
the coupled-mode theory yields a good approximation with

- enough accuracy. One disadvantage of the present coupled-

mode theory is that it does not give the correct coupled-
current distributions. This is because the assumed electric
field defined by (12) does not satisfy fully the boundary
conditions on the coupled conductor surfaces. The coupled-
current distributions can be calculated when the more rigorous
perturbation technique is implemented for the coupled-mode
formulation. One such method is the coupled-mode theory
based on a singular perturbation scheme [6].
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