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Cc)upled-Mode Formulation of Multilayered

and Multiconductor
Kiyotoshi Yasumoto,

Abstract— A novel coupled-mode formulation for multilay-

ered and multiconductor transmission lines is developed. In
this formulation, the solutions to the original multiconductor
system are approximated by a linear combination of eigen-
mode solutions associated with the isolated single conductor
line located in am appropriate reference dielectric medium, and

the reciprocity theorem is used to derive the coupled-mode
equations. The coupling coefficients are expressed in terms of
the simple overlap integrats between the eigenmode fields and

currents of the individual conductor lines. As a basic application,
the dispersion characteristics of two identicat coupled-microstrip
lines are analyzed using the proposed coupled-mode theory. It

is shown that the results are in very close agreement with those
obtained by the direct Galerkin’s moment method over a broad
range of weak to strong coupling.

I. INTRODUCTION

M ULTICONDUCTOR transmission lines arranged in a

multilayered dielectric medium are widely used in the

design of microwave and millimeter-wave integrated circuits.

One of the mc~st important subjects on such transmission

systems is to evaluate efficiently as well as accurately the high-

frequency electromagnetic coupling between nearby conductor

lines. The coupling causes a crosstalk that seriously affects the

ck,cuit performance in high-speed operation. The transmission

characteristics clf coupled conductor lines can be rigorously

analyzed using various numerical methods [1]. However, those

direct solution methods become much more invoIved both an-

alytically and numerically when the number of conductor lines

increases and the conductors are situated in different layers of

the multilayered dielectric medium. Therefore, there has been

a strong need to implement approximate solution methods [2],

[3] for multilayered and multiconductor transmission lines.

In this paper, we present a coupled-mode formulation for

multilayered and multiconductor transmission lines based on

the full-wave analysis. The formulation is an extension of

the corresponding coupled-mode approach [4] for optical

waveguides. The total fields supported by multiconductor

lines are approximated by a linear combination of the modal

fields associated with the isolated single conductor lines, and

the coupled-differential equations governing the evolution of

modal arnplitud,~s in each line are derived by making use of

the reciprocity relation. The coupling coefficients are given by

the simple overlap integrals between the eigenmode fields and
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currents of individual conductor lines in isolation. The new

formulation is applied to the analysis of two identical coupled

microstrip lines. It is shown that the dispersion characteristics

calculated by the present coupled-mode theory are in very

close agreement with those obtained from the direct Galerkin’s

moment method in the spectral domain over a broad range of

the separation distance between the two microstrips.

II. FORMULATION

Let El and IZl be the electrie and magnetic fields produced

by a current source J1 located in one dielectric medium with

permittivity S1(y) and permeability po, and 13z and 172 be

the electric and magnetic fields produced by a current source

JZ located in another dielectric medium with permittivity

&Z(y) and permeability #o. These electromagnetic fields satisfy

Maxwell’s equations

v x El = –j(JJpoH1 (1)

V x HI = jWE1(y)E1 + J1 (2)

v x J?3 = –j(J/@H2 (3)

V X H2 = jw1:2(y)E2 + J2 (4)

and boundary conditions in Ithe respective configurations.

Using a similar procedure for the Lorentz reciprocity theorem

in (l)-(4), the following equation is derived

V.(E1XH2– E2XH1)

= jU~&(y)El . E2 + E2 . J1 – El oJ2 (5)

where As(y) = El(y) – S2(y). When (5) is applied to a

cylindrical geometry which is translationally invariant in the

z direction, we obtain

;~(E1 X H2 -E2 X HI) .zdxdy

= jw
/

As(y)E1 . E2dxdy
s

+
J

E2 . J1 dxdy –
J

El . J2dzdy (6)
s s

where 2 is the unit vector in the z direction and S denotes

the cross-section area in the transverse z – y plane. Equation

(6) constitutes the basis of tlhe coupled-mode formulation

presented here.
To illustrate the formulation process, we consider two

coupled conductor transmission lines a and b embedded in

a trilayered dielectric medium over a perfectly conducting

ground plane as shown in Fig. 1. C. and cb represent the
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cross-sectional contours of perfect conductors a and b in the

transverse plane. The geometry is uniform in the wave-guiding

z direction and the permittivity distribution of the dielectric

layer is denoted by s(y), We define two sets of solutions of

Maxwell’s equations to which the reciprocity relation (6) is

applied. For the first set of solutions (El, Hl, J1 ), we adopt

the eigenmode fields and currents (II, II, J) for the original

coupled structure as shown in Fig. 1 with c1 (y) = c(y).

As the second set of solutions (132, Hz, Jz), we employ the

eigenmode fields and currents associated with the isolated

single conductor lines a and b located in the dielectric media

with e2(y) = Es(y) and &2(y) = e~(y), respectively. In this

case, two different models of the isolated conductor lines are

possible as the basis of the original coupled structure. Fig.

2(a) and (b) show the isolated conductor lines located in the

same trilayered dielectric medium as in the original structure,

for which c.(Y) = Zb(y) = &(y). Fig, 3(a) and (b) show the

isolated conductor lines located in the two-layered dielectric

media with e.(y) and &b(y), respectively, that are different

from the original one with e(y). The eigenmode solutions for

the fundamental modes in those isolated configurations (a) and

(b) are denoted as follows:

~[+) = e$~) (x, y) exp(+~l?d)v

= [eu,t(x, Y) + %u,=(z, u)] exp(+jpu~) (7)

@*) = h~+)(x, y) exp(+jp.~)v

= [+hv,,(x, y) + .%v,.(~, y)] exp(+j/3uz) (8)

J(*) = j~+)(x, y) exp(+~~.~)u

= Uv,t(Z} Y) + %).(x) Y)] exp(+~p.~) (9)

where v = a, b, the superscripts (+) and (–) indicate the

modes propagating in the +Z and – z directions, respectively,

and ~u is the propagation constant of the isolated conductor

line v. Applying the reciprocity relation (6) to the two sets of

solutions (E, H , J) and (11$-), 11$-), J!– ) ), we obtain

: L(E X H:-) - Ej-) X H) c2dxdy

= jw
/

A&a(y)E E~-)dzdy +
s

E!-) . Jdmdy (10)
s Cb

where Ae. (y) = ~(y) – ~. (y), and we have used the boundary

conditions that E . J ~–) = O on C. and cb, and EL–) .

J = O on C.. Similarly two sets of solutions (E, H, J) and

‘-), J~-) ) lead to(E$-) , Hb

= jw

/

A&5(y)E . E$-)dzdy +
/

E~-) Jdzdy (11)
s c.

where A&b (y) = &(y) – Eb (y), and we have used the boundary

(-). J=oon~-~ = f) on (Ja and Cb, and E~conditions that E. Jb

C5. Although (10) and (11) give the exact relations, (E, H, J)

are the unknown eigenmode fields and current for the coupled

system. Then we express those fields and current distribution

as follows:

E = a(z)e$+)(z, y) + b(~)e~)(~ Y) (12)

Fig. 1. General configuration of coupled two-conductor lines located in a
trilayered dielectric medium with E( y).

H = a(.z)h$+)(z, y) + b(z)h~)(x, g) (13)

J = a(z)~$+) (r, y) + b(x)~~) (~, Y) (14)

where a(z) and b(z) are unknown amplitude functions. The

above expressions are just the modal expansions in terms of

the two fundamental modes in isolated single conductor lines

a and b, It is also noted that the above expansion is only

an approximate set of solutions to the eigenmode fields and

current of the coupled system and the electric field defined by

(12) satisfies, only approximately, the boundary conditions on

the coupled conductor surfaces.

Substituting (7)–(9) and ( 12)–(14) into (10) and (11) and
.(+) = () ontaking into account that j$+) = O on Cb and j’b

C., the coupled-mode equations governing the evolution of

the amplitude functions a(z) and b(z) are derived. For the

first choice of the isolated conductor lines with Aea(y) =

A&6 (y) = O as shown in Fig. 2, we obtain

Nab + Nba
= –j/3aa(2) – j[h ~ + K.b]b(~) (15)

Nab + Nba d
:b(z) + ~ ~a(z)

= –.7’/&b(’) – j[f% ‘“b; ‘b”+&&(Z) (16)

with

where u, p = a, b, and we have assumed that the eigenmode

fields are normalized so that Naa = N5b = 1. For the second

choice of the isolated conductor lines as shown in Fig. 3, we

have

Nab + Nba d
&a(z) + ~ ~b(z)

= –.7’[& + L..]a(z)

(19)
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Fig. 2. (a) Isolated (conductor line “a” and (b) isolated conductor line “b”

located in the same dielectric medium with s(y) as the original structure in
Fig. 1.

- Iev,z(z,u)ep,z(ir, Y)]ddy (21)

where v, ~ = a, b, Thus, the problem of two coupled conductor

lines is reduced to that of two isolated conductor lines. When

the eigenmode fields and currents for the isolated conductor

lines a and b are specified analytically or numerically for

the respective propagation models, the coupling coefficients

NUW, KuP, and LVP (v, LJ = a, b) governing the interaction

between the two conductor lines are easily calculated by the

overlap integrals given by (17), (18), and (21). The solutions

to the coupled-mode equations (15) and (16) or (19) and (20)

give the propagation constants of two fundamental modes in
the coupled conductor lines. Comparing the coupled-mode

formulation basecl on the two different propagation models, we

note that the calculation of eigenmodes of isolated conductor

lines as the basis, is simpler in the second propagation model,

whereas the resulting coupled-mode equations are more com-

plicated than those obtained by the first propagation model.
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Fig. 3. (a) Isolated conductor line “a” located in a two-layered dielectric

medium with E. (y) and (b) isolated conductor line “b” located in another
two-layered dielectric medium with eb ( g).

The procedure of coupled-mode formulation presented here

is general. For a system of multilayered N coupled-conductor

transmission lines, we may introduce N configurations of iso-

lated single conductor line placed in an appropriate dielectric

medium as the basis of propagation model. The eigenmode

fields and current of the coupled system are approximated

by a linear combination of those of isolated N systems.

The interaction between the vth and pth conductor lines are

described by the coupling coefficients NV@, KVP, and LVP

defined by (17), (18), and (21). Then the problem of the

N coupled-conductor lines is reduced to the analysis of the

N isolated single conductor lines and the simple numerical

integrations for calculating the coupling coefficients. This

analytical and numerical procedure is much simpler than the

direct numerical solution methods. It is noted that although

various numerical techniques have been developed [1] for the

analysis of coupled-conductor lines, the application of those

methods to the configurations of multiple nonidentical coupled

lines are very complicated and rather difficult.

III. NUMEIUCAI. EXAMPLES

As a basic example, the proposed coupled-mode theory was

used to analyze coupled-microstrip lines as shown in Fig. 4.

Two identical microstrips a and b of width 2W and zero

thickness are situated with spacing 2d on the substrate-cover
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TABLE I

NORMALIZED PROPAGAmONCONSTANTS~/ko OF THE SYMMETRIC AND ASYMMETRIC EHo MODES OF Two COUPLED MICROSTRIP
LINES WITH w = 1.5 mm, h = 0.635 mm, E, = 9.8, f = 5-20 GHz, AND VARIOUS SEPARATIONDISTANCES d/w. UiI Is

THE PROPAGATIONCONSTANT OF THE EHo MODE OF ISOLATED SINGLE MICROSTRIP AND kO Is THE WAVENUMBER IN FREE
SPACE. CMT AND MOM REFER TO THE PRSSENTCOUPLED-MODE THEORY AND THE DIRECT GALERKIN’S MOMENT METHOD

(a) f = 5G’liz (~o/kO = 2.83466)

Symmetric mode Asymmetric mode

d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00

CMT 2.96462 2.93887 2.91099 2.87032 2.68284 2.72413 2.75571 2.79826

MOM 2.95881 2.93332 2,90836 2.86994 2.68033 2.72062 2.75351 2.79775

(b) f = 10GHz (flo/ko = 2.89439)

I Symmetric mode Asymmetric mode

dlw 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00

CMT 3.01131 2.98093 2.95173 2.91388 2.75360 2.79981 2.83363 2.87432

MOM 3.00504 2.97713 2.95055 2.91397 2.75194 2.79690 2.83183 2.87393

(c) f=15GHz (~O/k, =2.94191)
Symmetric mode Asymmetric mode

d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00

CMT 3.03885 3,00733 2,98062 2.95115 2.82315 2,86947 2.90071 2.93247

MOM 3.03443 3.00622 2.98092 2,95147 2.82488 2.86838 2.89971 2.93225

(d) f=20GHz (~O/kO =2.97776)

Symmetric mode Asymmetric mode

d/w 1.10 1.30 1.50 2.00 1.10 1.30 1.50 2.00

CMT 3.05624 3.02606 3.00332 2.98207 2.88120 2.92425 2.95070 2.97340

MOM 3.05437 3.02685 3.00422 2.98227 2.88632 2.92450 2.95011 2.97320

Y
‘o

d I d

‘u
Fig, 4. Configuration of two Identical coupled mlcrostnp lines.

interface in a trilayered structure, which consists of a ground

plane of perfect conductor, a dielectric substrate of thickness
h and relative permittivity e., and a cover layer of free space.

For this trilayered structure, two configurations for the isolated

conductor line model shown in Figs. 2 and 3 coincide with

each other, and the coupled-mode equations (19) and (20) are

reduced to(15)and (16) with A~. (y) =AEb(y) =0.

The eigenmode fields and currents of the isolated single

microstrips a and b, which are used to evaluate the coupling

.P and N.P (v, p = a, b), can be easily cal-coefficients K

culated with Galerkin’s moment method solutions [3] in the

spectral domain for a conventional single microstrip as shown

in Fig. 5. Let @o, eo(<, y) and ko(~, y), and ~o(() be the

propagation constant, the eigenmode fields, and the eigenmode

Y

‘o
i

v////:///A

t 4 I *

Fig. 5. Conventional single mlcrostrip line introduced as the basis of coupled
mlcrostnp lines shown in Fig. 4,

current in the Fourier transformed domain for the fundamental
EHO mode of the conventional single microstrip line. Then we

have the following relations

L= LiJ=@o (22)

[~a((> Y), ~a(($ Y)$;a(ol

= [20(<, Y), ~0({, Y)l;o(<)l exp(j<d) (23)

[E,(<, y), )&(<, y),;,(()]

= [eo(<, y), LO(<l y),jo(<)] exp(-j<d). (24)

These solutions are substituted into (17) and (18). Omitting

the mathematical details, the coupling coefficients are given
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Fig. 6. Dispersion characteristics of the symmetric and asymmetric EHo modes of two coupled microstrip lines for four different separations. The vafues

of parameters are the same as those given in Table I. (a) d/w = 1.1. (b) d/w = 1.5. (c) d/w = 2.0. (d) d/w = :!.5.

as follows:

~= Ab+Ntm=

2 /
m 1(() cos(2<d)d< (25)

o

.i

/‘Z. C%o,c((, h)jo,z(() + @o,z((>~)jo,z(<)l

x cos(2<d)d( (26)

with

where we have used the symmetric properties of &o((; y),
ho((, y), and ;O(’) as the functions of<. The integral in (27)

can be evaluated in closed form using the dyadic Green’s
function [5] in the spectral domain. The integrals in (2.5)

and (26) are efficiently calculated using the spectral data

which were obtained in Galerkin’s moment method analysis

of the conventional single microstrip line as shown in Fig. 5.

Note that the coupling effect between two microstrip lines

is described by the integrand factor cos(2~d) in (25) and

(26). The coupled-mode equations (15) and (16) with the

substitution of (22), (25), and (26) give two solutions. One

is the symmetric EHO mode with the propagation constant

P=PO++ (28)

which yields a(z) = b(z), and the other is the asymmetric

EHO mode with the propagation constant

(29)

which yields a(x) = –b(z).

The method described above was implemented to calculate

the propagation constants of two identical coupled microstrip

lines. For comparison, the same coupled problem was also

rigorously solved by using directly Galerkin’s moment method

[3] with Chebyshev polynomial basis functions weighted by

appropriate edge factors. The normalized propagation con-

stants @/k. of the symmetric and asymmetric EHO modes

calculated by (28) and (29) are given in Table I for w =

1.5 mm, h = 0.635 mm, S. = 9.8, ~ = 5 w 20 GHz, and

various separations d/w, and compared with those of the
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direct Galerkin’s moment method solutions, where k. is the

wavenumber in free space. Fig. 6(a)–(d) shows the dispersion

curves of the symmetric and asymmetric EHO modes of

coupled microstrips with four different separations. The solid

lines are the results of the present coupled-mode theory and

the dashed lines are those of the direct Galerkin’s moment

method. The values of parameters are the same as those

given in Table I. Comparing the results in Table I and Fig. 6

obtained by the two different approaches, we can see that

the coupled-mode approximations are in very close agreement

with the rigorous Galerkin’s moment method solutions over a

broad range of weak to strong coupling. Due to the simpler

matrix equation involved, the numerical procedure of the

coupled-mode analysis is much more efficient than that of the

direct Galerkin’s moment method. For the same computation

of propagation constants, the coupled-mode analysis requires

only about 890 of the computer time needed by the direct

moment method.

The rigorous Galerkin’s moment method solutions show

that when the two microstrips are widely separated, the prop-

agation constants of the coupled system converge to that

of the corresponding isolated single microstrip. As the two

microstrips become closer, the coupled system modes, sym-

metric and asymmetric modes, emerge and their propagation

constants shift nearly symmetrically from the isolated one.

When the microstrip separation is further decreased, the shifts

become asymmetrical. The coupled-mode solutions (28) and

(29) clearly describe this situation. The coupling coefficient

N explains such an asymmetric behavior of the propagation

constants of the coupled modes in a strongly coupled case. In

this respect, the present coupled-mode theory is different from

the full-wave perturbation theory[3]. Although the perturbation

theory is another efficient approximate technique, it predicts

the coupled system modes shifted symmetrically from the

isolated one over the entire separation distance and loses the

validity in the strongly coupling regime.

Before concluding, it is worth mentioning why the present

coupled-mode formulation yields a very good approximation

for the propagation constants of coupled microstrip lines. As

stated in Section II, the assumed expansions of the eigen-

mode fields and current (12) to (14) do not satisfy fully

Maxwell’s equations and the boundary conditions for the

coupled-conductor lines. However, the propagation constants

has a stationary nature with respect to a small variation in the

associated field distributions. Following the same procedure

as in the coupled opticaI waveguides [4], we can derive the

variational expression for the propagation constants which

leads to the identical coupled-mode equations as (15) and (16)

or (19) and (20). This fact indicates that any deviations of first

order in the assumed eigenmode field distributions only result

in errors of second order in the propagation constants.

IV. CONCLUSION

A novel coupled-mode theory for multilayered and multi-

conductor transmission lines has been developed based on the

generalized reciprocity relation. This ccupled-mode theory is a

powerful analytical and numerical technique for approximating

the coupling between adjacent conductor lines with a good

physical justification. The coupling coefficients are given by

the simple overlap integrals between the eigenmode fields and

currents associated with individual isolated single lines. This

greatly simplifies, the computational procedure and therefore

remarkably reduces computation time. The proposed coupled-

mode theory was applied to the analysis of two identical

coupled-microstrip lines. The numerical results of the prop-

agation constants are in very close agreement with those

of the rigorous Galerlkin’s moment method solutions over

a broad range of weak to strong coupling, indicating that

the coupled-mode theory yields a good approximation with

enough accuracy. One disadvantage of the present coupled-

mode theory is that it does not give the correct coupled-

current distributions. This is because the assumed electric

field defined by (12) does not satisfy fully the boundary

conditions on the coupled conductor !sttrfaces. The coupled-

current distributions can be calculated when the more rigorous

perturbation technique is implemented for the coupled-mode

formulation. One such method is the coupled-mode theory

based on a singular perturbation scheme [6].
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